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1 | INTRODUCTION

In this paper, we consider the problem of finding a pair of functions (u, f) satisfying the following system:

Diu— au= @) f(x), (1) €(0,1)x(0,1),

u(0,t) = u,(1,t) =0, te(0,1), 1.1
u(l,t) =0, te(0,1), )
u(x, 0) = up(x), x € (0,1),

where ¢ € L®(0,1) and uy € L*(0,1) are given functions. Here, Dfu is the Caputo fractional derivative of order a of an
absolutely continuous function u, defined as

1 u'(s)
r-a)/ (-5
0

Dfu(t) =

[l
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where I' denotes the standard Gamma function. Note that if the fractional order « tends to unity, the fractional derivative
Dfu converges to the canonical first-order derivative Z—‘;,I and thus the problem 1.1 reproduces the canonical diffu-
sion model. See, eg,’* for the definition and properties of Caputo's derivative. The mathematical model 1.1 arising
in dynamical systems, in control theory, electrical circuits with fractance, generalized voltage divider, viscoelasticity,
fractional-order multipoles in electromagnetism, electrochemistry, and model of neurons in biology is provided in®; see
also.> As we know, if ¢ € L®(0,1),f € L*(Q) are given , then the direct problem of 1.1 has a unique solution in L? sense

(see*). The inverse problem here is the determination of the source term f(x) from the final state observation
u(x,1) = up(x). (1.2)

where u; is a given function in L?(0,1). Due to the modelling as well as measurement errors, the time-dependent source
term ¢(t) cannot be to obtain with infinite precision in practical applications. Instead, only observation data ¢_(t) up to
the noise level € are known. Similarly, a noisy version of the final state u] € L%(0,1) is used instead of the exact one u; (x).
It is known that the inverse source problem mentioned above is ill posed in general; therefore, a small perturbation in the
data may cause large an error in the sought solution.

To the authors’ knowledge, there are few papers for identifying an unknown source for a fractional diffusion equation
by regularization method. When ¢ = 1, the problem with deteministic noise has been investigated using truncation
method® and quasi-reversibilty method® and in some other papers.”® When the time-dependent source term ¢(t) > 0is
not perturbed, the fractional diffusion has been studied recently by T. Wei® using quasi-boundary value method. When
determined measured data are replaced with random data. In random case, we have to apply our knowlegde about statictis
to solve the problem. That is the reason why the random case is more difficult than the deterministic case. Until now,
there are very few papers considering the random noise for inverse source problem. In,'® the authors considered a similar
problem of 1.1 with discrete random noise, ie, the input data are noised by some concerete points (called design point) .
Motivated by this reason, in this paper, we consider another random data as follows:

P =¢p+ebd o = ug + ey 0 =u; + e (1.3)
in which e corresponds to the noise level and 6, y, and & are stochatics processes, ie, bounded linear operators

&:L%0,1) > L*(B, A, P)
w : L%(0,1) —» L*(B, A, P)
5 1 L*(0,1)nL®(0,1) > L*(B, A, P)

where (53, A, P) is underlying probability space where B is sample space, A is o-algebra, and P is probability measure.
The reader is referred to" for more discussion on stochastic processes. The strong point of our paper is that generalized
to the truncation method in."° To the best of our knowledge, our paper is the first investigation for the inverse source
problem for fractional diffusion equation with the model 3.4.

This paper is organized as follows. In section 2, we propose a regularized scheme using a filter and prove the convergence
of the approximate solution to the exact solution for a general filter. The paper ends with a couple of examples of some
specific filters in section 3. Our analysis does not contain any numerical results, which we hope to obtain in a future work.

2 | MAIN RESULTS
We start by recalling the definition of the Mittag-Leffler function, a special function that plays an important role in
understanding diffusion processes. For more information, see'* and references therein.

Definition 2.1. For any @« > 0 and f € R, the two-parameter Mittag-Leffler function, a special function that plays
an important role in understanding diffusion processes. For more information, see'* and references therein

v &
Eop() = kzzor(akJr 5’ zeC.

The asymptotic growth of the Mittag-Leffler function is characterized in the following lemma.
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Lemma 2.1. There exists constants P, B~, Bt > 0 such that for all « € (0,1) and x < 0, it holds that

- +
B 1 g w<-2__1  w<o
TM-ol-x_ % Tl—u)1—x

Notice that, these estimates are uniform in a.

Proof. The proof can be found on p. 35 in Podlubny:.?

Lemma 2.2. Letup,u; € L?(0,1)and ¢ € L®(0,1), and w € R. Then we have

1 1

/ u(x) cos(wx)dx — E, 1(—w?) / uo(x) cos(wx)dx
0

0

1

/s“—lEa,a(—wzs")(p(l —8)ds

0

1
/ f () cos(awx)dx =
0

Proof. Multiplying both sides of 1.1 with cos(wx) and integrating from 0 to 1, we obtain

(4

1 1 1
% u(x, t) cos(wx)dx — / Uy (X, 1) cos(wx)dx = @(t) / f(x) cos(wx)dx.
0 0 0

Integrating by parts and noting that u(1, t) = u,(0, t) = u,(1, t) = 0, we have

1

1 1
/ Uy (X, t) cos(wx)dx = u,(x, t) cos(wx)| + w / U, (x, t) sin(wx)dx
0 0 0

1

1 1
=w / U, (x, ) sin(wx)dx = wu(x, t) sin(wx)| — w? / u(x, t) cos(wx)dx
0 0 0

1
= —@? / u(x, t) cos(wx)dx.
0
Inserting 2.1 into 2.1, we obtain

@ 1 1 1

% u(x, t) cos(wx)dx = —w* / u(x, t) cos(wx)dx + ¢(t) / f(x) cos(awx)dx.
0 0 0

This implies that the function h(t) = /01 u(x, t) cos(wx)dx is a solution of the problem:

Dfh(t) = —w*h(t) + H(1),0 < t < 1,
h(0) = hy,

1

(2.1)

(2.1)

(2.3)

where H(t) = ¢(t) / f (%) cos(wx)dx. From?(Theorem 3.2 on page 124), the only solution corresponding to 2.3 is
0

given by
t
h(t) = Eq1(~0*t%)ho + / S B, o(—*s*)H(t — s)ds,
0

2.4

where E, , is the Mittag-Leffler function of Definition 2.1. Choosing ¢t = 1 and noting that u(x, 1) = u;(x), u(x,0) =

Up(x), 2.4 gives
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1 1 1

1
/ u;(x) cos(wx)dx = E, 1 (—0?) / Uo(x) cos(wx)dx + / $" By a(—0*s*) (1 — s)ds / £ (%) cos(wx)dx.
0 0

0 0

This completes the proof. O

In the following, we shall provide appropriate conditions so that every filter satisfying these conditions yields a
meaningful numerical solution.

Assumption 2.1. Let any f,w € (0, o). The function R(f, ) is called a filter if there exists two positive functions
Ki(p) and K,(p) such that

IR(B, )| < Ky(B) forall ¢ > % (2.5)

o] forall u < l 2.6
ROo < Ry(p). if 0> 1 o .

ol

{ ROON < Ky(p), if w <1

Let R,(B) := R(p, w). We assume furthermore that

e R, (p)is continuous;

o limy_.R,(f) =0;

o limy_oR,(f) = 1;

e R, () is strictly decreasing function over (0, ).

Now, we are in a position to define a regularized solution for the system 1.1-1.2.

Definition 2.2. For any given measured data @;°, iio°, ¢ that satisfy 3.4, we define a regularized solution for the
system 1.1-1.2 as follows:

fex) =-=
27 J S s7 1By o (025 (1 — s)ds

1 ~ € 1 ~ €
- o0 1€ (x) cos(wx)dx — Eq1(—w?) [ 1o (x) cos(wx)dx
L [ k.ot " D )y & o, )
where the order « belongs to (0, 1), and R(f, ) is a filter, which defined in Assumption 2.1 .
Our main results are described in the following theorem.

Theorem 2.1. Let @, ¢ be such that p(t) > Cy > 0, @) > (_?0 > 0 foranyt € [0,1]. For any given measured
data U;°, ily°, @° that satisfy 3.4, we consider the regularized solution f€ of the system 1.1-1.2 as in definition 2.2. We
assume furthermore that

Ellél2 0.1 = EllwliZ. o) = EllSN7e = 1.

Let K;,K, be as Assumption 2.1 and assume that lim._oK(f) = lim._oeKi(f) = 0. Then the function 2 f €isan
approximate solution of f and we have the following error estimate:

~ 2 2
Ellf =21 < ZCHL+KRAIE + ZK2B) |1+ V27 + M| 1/ (28)
where
8Co + luollzz0,1y + Hlusllzz0,1) 1
C1 = . 0 — N M = ;da)
min(CZ, Co)l1 - Bqa(~1)] ozl

Before prove Theorem 2.1, we state the following lemma.
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Lemma 2.3. Let §, &,y be as Theorem 2.1. Then the following estimate holds:

2
B (uh Uo, 55 67 W)

min(C2, Co)(1 - Ean{~1})

E

<C,

where

B (u1,u0,8,&,y) = |lurllzzo.n 18117 + lluollzzo.nl18117e + Colléllzz0.1) + Collw llzz0.1)- (2.9

Proof. Using the inequality (a; + a; + a3 + as)* < 4a’ +4a3 + 4a2 + 4a, we get

_ _ 2
1B (u1, Uo, 8, &, w)| * = | luallr20n 18112 + Nuollzz,n 181170 + Colléllr201) + C0||W||L2(0,1)]

2 2 2 2 AL R
< 4””1”[{2(0’1)”5”[‘00 + 4“”0”[{2(0,1)”5”[‘«; + 4C0”§”L2(0,1) + 4C0“W”L2(0’1)_

Since E|[&]| = 1, we have by Jensen's inequality

2
12(0,1)
ENEDG0n < ENEIZ, o, =1

L2(0,1) = 12(0,1) :

Therefore, we get E||£]|1201) < 1. By a similar argement as above, we get E|ly||1201) < 1 and IE||5||%°o < 1. This
implies immediately

—2 —2
E(B (1. g, 5.£.9))* < w112, EISIZ. + 4lluol1Z, o ENSIZ +4CoEIENZ, 01, + 4CoENW I, 0, 10
—2 .
< 8C0 + 4””0”12‘2(0’1) + 4””1”%2(0’1)'
O
Proof. Let the function f be defined as
$f0 x€©,
J=1 3/ x € (-1,0), (2.11)
0 otherwise.
Since f is odd function, we know that
/ ]7 (x) sin(cox)) dx =0.
The Fourier transform of f is given by
P = [ Fwei
- / [ F00) cos(@x) — i f(x)sin(cox)] dx
1 B 1 (2.12)
= / 21 (x) cos(wx)dx = / f(x) cos(wx)dx
0 0
/01 u; cos(wx)dx — E, 1(—w?) /01 g cos(wx)dx
/01 s1E, o (—?s®) (1 — s)ds ’
which we have used Lemma 2.2 in the last equality. Since 3.8, we obtain the Fourier transform of f ¢ as follows:
1~ 1~
~ 1€ (x) cos(ewx)dx — Ey 1 (—? 1° () cos(wx)dx
F(f€)=F{F‘1lR(ﬂ,w)/° 1) 5 ) 1(=0?) [ 1T (x) cos(x) ]}
1B, ((—w2s¥) @ (1 — s)ds
Jo o o1 —s) (2.13)

/01 11 (x) cos(wx)dx — Eg 1 (—0?) /01 i1p° () cos(wx)dx

= R(f, w) n —
Jo 8 Eqq(—@?s)@¢(1 — s)ds
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Let us define the following function

[} cos(@x)dx — Eq1 (=) ;' g cos(wx)dx

vp(w) = R(B, w) T (2.14)
Jo 8% ' Eqa(—a?s)p(1 — s)ds
For any w € R, using two above equalities, we obtain
1 1
~ Uy cos(wx)dx — Ey1(—@?) [ ug cos(ewx)dx
(@) ~ PP @) = R(p.ay | 20O Eaa G0 fy o cost)
/01 s1E, o (—w?s®) (1 — s)ds
) o () cos(@x)dx — Eg1(—a?) [ i (x) cos(x)dx
fo1 s1E, o (—02s®)@e(1 — s)ds
_RG.o l [ ua(x) cos(@x) — Eq1(~@?) [, o cos(wx)da
o $% 1y o(~a025)p(1 — 5)dis
’ (2.15)
! 11 (%) cos(@x) — Ey 1 (=) [ uo cos(wx)dw
_Jo : 0
Jo $2 1y q(—0?s)@e(1 — s)ds
fol Uy (x) cos(wx) — E, 1 (—0?) fol 1o cos(wx)dw
Jo $7 1y o(—0?sm)@e(1 — s)ds
_ /01 111 °(x) cos(wx) — Ey 1(—w?) /01 iy° cos(wx)dw
I a-1 P AV —
Jo $ g a(—a?s)@¢(1 — s)ds
Using 3.4, we obtain
vy(@) = F(f)(@)
( /01 u1(x) cos(wx) — Eq 1(—w?) [01 Uy cos(cox)dw) /01 S 1E o (—a?s%)(@¢(1 — 5) — (1 — s))ds
= R(f, w)
/01 5*1E, o(—w2s®)@¢(1 — s)ds /01 5*1E, o (—02s)p(1 — s)ds
N o i) = € (%)) cos(wx)ds Eor(ee) o uox) — iI° (x)) cos(awx)ds
- Lig,1 —@
/01 $91E, o (—0?s*) @ (1 — s)ds /01 S 1B, o(—02s*) @ (1 — s)ds
( 1 2y [1 1 g1 2 (216)
e ( f, ur(x)cos(wx) — Eq1(—?) [ to cos(cox)da)) Jo $* ' Eqa(—w?s*)5ds
=R(f,w)§ -
/01 $1E, o (—w2s*)@¢(1 — s)ds /01 $1E, o (—02s*)p(1 — s)ds
L@
€ /01 & cos(wx)ds B, (o) € /01 y cos(wx)ds
+ — Eg1(—w .
/01 s1E, o (—w?s®)@¢(1 — s)ds /01 s1E, o (—w?s®)@¢(1 — s)ds
I;(;) 132;2)

This implies immediately

Vp(@) = F(f)@)] < R(B, ») (|h()] + |L(@)] + L@)]).
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Step 1. Estimate I (w). Using the fact that ¢(t) > Co > 0, @°(t) > Co > 0 for any t € [0, 1], we have

€ | [01 u1(x) cos(wx) — By 1(—w?) /01 U cos(wx)dw| /01 SY1E, o (—w?s%)|6|ds
|11 (@)

o 571 By o (~a25)@¢(1 — $)ds [ s91E g o(~a?s%)g(1 — s)ds

e (Jo' w100l cos@x)] + Ena(=0?) [, lutoll cos(@)lde ) f' s Eo(~es)|61ds 2.17)

IA

—_ 2
CoCo ( I8 sa—lEa,a(—wzsa)ds>

Due to Lemma 2.4'* and applying the Holder inequality, we deduce that

1 .
e (lurllzzn + lluollzzon ) 18llzs [y $* ' Eqo(—w?s™)ds

|L(w)| < — 2
coco( / sa—lE,,,a(—wzsa)ds> 215)
3 ew? (|lurllz21) + lluollzz01) 18112,
CoCo(l = Ey1(~1))
Step 2. Estimate I,(w). We have
1
e’fo écos(a)x)dsi ca?|E|l
0.1)
L)) = — — < =
Jo 8 Ega(-0?s)@(1 —s)ds  Co(1 — Eq1(-1))
Ml if |o|>1 (2.19)
Co(1-E,;(-1))° -
=) ellélizen it ol <1
Cy(1-E, 1 (-1)° '
Step 3. Estimate I3(w). We bound |I3(w)| as follows:
1
e |y v costanyds Eqa(=Doelly [l201ds
s 0,1)
(@) = Egy(—0?)— _ < 2
Jo $%  Eqa(—?s)@¢(1 — s)ds Co(1 — E41(-1))
_ew2||W||Lz(0,1> it o> 1 (2.20)
Co(1-E, (1))
_€||V/||L2(0'1, , lf |Cl)| < 1’ ’
Co(1-E,;(-1))
From the above observations, we can conclude that
€ R(,0)(B(uy.Uy.6.Ew)) it o] >1

0 —2
min(Cq,C0)1-E,1(-1)
eR(ﬂ,w)(E(zul,uo,lS,f.W)) , if |w| <1, (221)
min(C(Z),C())(l—Ea.l(_l))

vp(@) = F(f)@)| <

where B is given by 2.9. Using Lemma 2.3, we have

o If |w| > 1 then
R(B, w)*e*w* (A1 (u1, ug, 8, &, w))°

|vﬂ(w) ~F(f* 6)(w)| 2< — (2.22)
min(Cy, Co)(1 — Eq1(—1))?
o If |w| <1then
2.2 2
‘vﬁ(a)) _ F(fe)(w)|2 < R(B, w)“e*(A1(us, uo, 6, &, y)) ' (2.23)

min(C*, Co)(1 = Ea1(~1))2
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Since /I

1

ol>1 o = M < o0, we have the following estimation:

/ lvp(@) = F(f*)(@)|*dw
2 B 2 2 B 2
— € | (214’ Uo, 5’ év W)l € | (314’ Uo, 55 é’ W)l / R(ﬂ, w)Zdw
min(C, Co)(1 — Ey1(—1))? min(C, Co)(1 — Eq1(—1))2 7 lol<1
2 B 2 R 2 2 2 B 2
— € | (2147 an 67 57 W)l / (ﬂ? wzgl_?' dw +K12(ﬂ) € | (29 u09 67 éa W)l / dw
min(C%, Co)(1 — Ega(~1)2 /o1 1@l min(C?, Co)(1 — Eqy(—1))2/ lol=1

/ R(B, w)’w*dw +
|lo|>1

K2 (B)e? |B (ur, uo, 6, &, w)| 2 1 €2 |B (u1, Uo, 6, &, w)| 2
= do +
4= || %4 a4 =t
min(Cy, Co)(1 — E,1(=1))? 7 lol>1 min(Cy, Co)(1 — Eq1(—1))2

_ MEKZ(B)e* |B (uy, uo, 8, &, y)| 2 N €% |B (uy, up, 8, &, )| 2

—4 —4
min(Cy, Co)(1 — Eq1(-1)>  min(Cy, Co)(1 — Eg1(—1))?
_ M(Klz(ﬁ) + 1)62 |B (uls U, 55 57 W)l 2

< (2.24)
min(C:, Co)(1 — E,1(—=1))2
This implies that
0 - 1+ K? ’E |B ,Up, b, &, 2
E </ V(@) - P(ff)(w)l2> - LA B bV gk ki) (2:25)
oo min(Cg, Co)(1 — E,1(—1))

Then, we estimate E|[vs —F( f )||?. Subtracting 2.12 from 2.14, and by taking the square of the obtained result, we have

o s cos(@x)dx — Eq1(~@?) ;' o cos(wx)dx

- 2, (2.26)
Jo 8 Eqa(—@?s)@(1 — s)ds

lvs = F(OI? = RB, @) — 1)?

This leads to
~ ' dx — Eg1(-a?) [} dx
[ In@-ri@|dos [ ®p.o-17 Jo 1 ONOOD ~ Bun(07) Jp o oS
R w<1 Jo $ B a(—a?s)@(1 — s)ds
1 _ 2 1
+/ (R(B.0)— 1 Jo w1 cos(la)x)dx Eqp1(—?) [ g cos(awx)dx 240
w>1 Jo $* 1 Ega(—a?s)@(1 — s)ds 2.27)
<o [ o Sl cos(lcox)dx — Ey1(—0?) [ up cos(wx)dx o '
w<1 Jo $ Eqa(—a?s)@(1 — s)ds
L) / o flu cos(lwx)dx—E,,,l(—wZ) 1 ug cos(@x)dx o
w>1 Jo $ g a(—a?s)@(1 — s)ds
Since f € H'(0,1), we have
~ ! sin 1 /!
F(f)w) =/ f(x) cos(awx)dx = f(1) ww - 5/ () sin(wx)dx, Yw # 0. (2.28)
0 0
It implies that
P (Fw)| < | /(D] 4 I/l

|l [
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Applying Lagrange mean value theorem, we deduce that there exits x, € [0, 1] such that fol f)dx=(1-0)f(x) =
f (o). Furthermore, we get

f(1)=f(xo)+/

Xo

1 1 1
fl(x)dx = / fodx + / f'(0)dx. (2.29)
0 Xo

Recall that H'(0, 1) is the space of the function fsuch that fand f belong to L*(0, 1) with the norm defined by

”f”i]l(oyl) = ”‘f”iZ(O,l) + ”f,lliZ(OJ)'

It follows from 2.29 that

1 1
Q)] < / (Sl + 1 00Ddx < \/z / (7P + 1F/00)dx < V21l (2.30)
0 0

Hence,

1 1
s u1 cos(@x)dx — E,1(—w?) [ ugcos(wx)dx| 1+1/2
: - lw\lf 1/ 110> Vo # 0. (231)

|F(F)@)] = -
Jo $ Eqa(—a?s)p(1 — s)ds

| <
Since u < %, we know that f " 4w = M < oo. This leads to
2 @21 g2

N 2
/R |via(@) = P(P@)|der < EZOA + V2RI 201 / @ o
w<1

+ K2+ V22U S P, / ™ 1o (2.32)

2
w>1 @

< Kg(ﬂ)(l + \/5)2(1 +M)||f||i(1(0,1)'

Using Plancherel theorem, we obtain

572 2 X2 YN
ENS = 2705 <= (I = vl +Ellvy = F(F)I?)

N 5 (2.33)
< 2L+ KHPE + ZKEP) [+ V2P + M 171

O

Remark 2.1. Our method in this paper can be applied for solving the time fractional diffusion for any high dimensions
(in 2D and 3D).

Remark 2.2. In our theorem, we assume that f belongs to H'(0,1). This assumption is delicate since f is unknown
data. Assumme that some other conditions on given data of the problem. For # > 0, we set the following space:

+o0 1 2
H" ;= {v e L*0,1) : / 0)2”< / v(x) cos(cox)dx) do < oo}. (2.34)
—00 0

Ifuo € H, u; € " with y > #, we will obtain the convergence rate. Indeed, since 2.31, we get

/01 u; cos(wx)dx — E, 1(—w?) /01 ug cos(wx)dx
/01 $91E, o(—0?s*)p(1 — s)ds

(DZ

< *©
T Co(1 - E;1(-1))

P =

(2.35)
1 1
[ / u; cos(wx)dx — E, 1 (—?) / U cos(a)x)dx] )
0 0
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2

4000 1 2 +oo 1
|F( I3 )(a))| <cw ¥ / a)27+2< / U1 () cos(cox)dx) dw + Cw™ / ol ( / Uo () cos(cox)dx) , (2.36)
0 - 0

—0o0 {e]

where C indicates a constant, which only depends on Cy, . This implies that
F@)|? < cw ™ (ualiZye + lluoliy ). (2:37)

The right hand side of 2.27 is bounded by

RHS of(2.28) < C

K0 [ wrdo+ i) [ wz"—‘”dw] (a2 + ol ) - (2.38)
w>1

w<1

The right hand side of the latter inequality is convergent if and only if the integral / _ w*~*dw is convergent. Since
4y — 2u > 1, we obtain the convergence rate, which is similar to 2.32. In the future work, we try to consider the
regularized solution of possible fin the class H'.

Corollary 2.1. Let

Rp.w)=4{ L1@I=<F 5 (2.39)
0 |o|>p <,
where { > 2. Then, R(f, ®) satisfies 2.5 and 2.6. Here, K1(ff) = %,
Ka(p) = max { p, p* } (2.40)
where u < = and g = e’ with A € (0,1).
Proof. The constraint 2.5 is obtained as
1 1
¢ <pc -1 <pc
RB.olof =R(p.w) = § 120 NVSP 0 JPOIST T g g p). (2.41)
0 lo| > p ¢ 0 |wl>p ¢
The constraint 2.6 is obtained as, we consider |w| < 1
1
o] lo|™! || > p¢.
Since |w| > ¢, we have |w| ™! < f%, so
R(p.w) -1 Gt
IR, ®) — 1] < 01 o] < ﬁ_i < pe. (2.43)
|| B ol >
If |w| > 1, we have
RB.0) =1 _J 0 |o|<pF (244)
|l || ™ |l > p7%.
1 H
Since |w| > f ¢, we have |w|™ < f¢, s0
MS Ou |a)|$ﬂ i Sﬂ? (2‘45)
lo|# B ol > p ¢

Let us choose K, () = max{ﬂg , ﬂ§ } then the proof of this corollary is completed. O
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Lemma 2.1. Let p, f be positive constants, and ¢ > u. Let G(z) be a function defined by

ﬂz{‘ﬂ ( )
G(z) = z>0. 2.46
) 11 5%
cou|1TE e
Then, G(z) < ?[7"] Be.
Proof. 1t is easy to see that
C—p
limG@) = lim2%~— —lim—P? <1im-— —o, (2.47)
z—0 z-01 + ﬂzC z—=0ZH=¢ + PzH 20 ZH—¢
{—p
limG@) = lim 2%~ = lim—P? <limX o, (2.48)
Z—00 -] + ﬂz§ z—»oozﬂ_é, + ﬂzl‘ z—oo ZH

By taking the derivative of G with respect to z, we have

(¢ = w) — upzt| pzi—+1

A1 ey (2.49)

G'(z) =

! ! —_ __1
The function G(z) attains maximun value at z = gy, which satisfies G (z) = 0. Solving G (z), we get 7o = { 57” pe.
Hence,

1_? M
G) < Gzo) = = <—§ — M) pe. (2.50)
¢\ wu

Then, we derive constraint 2.6 as follow. With |w| < 1, we have

|R(, @) = 1| _ Plo|*!

ol 14 plalf (2.51)

O

Remark 2.3. With R(f, w) and f as in Corollary 3.1, applying Theorem 2.1, we conclude that the expectation of the

error between the regularized solution and the exact solution E|| f — 2 f Il iz oD is of order

L )
max{eé,ee“,e_ }
forany0 < 4 < 1.

Corollary 2.2. Let {, u be as Corollary 2.1. Let

1
R(f,w) = m (2.52)
Then, R(f, ) satisfies 2.5 and 2.6 with f(e) = €* for A € (0,1). Here, K;(f) = p~,
- T CT I
K>(p) = max ﬁ<§_—”> N uﬂE : (2.53)
C\ ¢
Proof. The constraint 2.5 is obtained as
|o|® 1 1
¢ — =
|R(B, 0)||w|* = T+ plolt < T < 5 (2.54)

ol
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We derive constraint 2.6 as follow. With |w| > 1, we have

IR, @) =1| _ Plowl**

= . 2.55
|l 1+ flof (2:53)
Let H(z) = ff; ; where z > 0. It is easy to see that
£-1
lim H@) = lim 2% = fim —? < jim X —o. (2.56)
Z—00 7m0 1+ fz8 2oz tl 4 Bz T 2o g
£-1
limHQE) = lim 2% — —fim—2? <im - —o. (2.57)
z—0 z—0 1 + ﬂzé z—0 z_é,"'l + ﬂz z—0 Z_C"'l
By taking the derivative of H with respect to z, we have
—1) = 75752
H'() = (¢ —=1)— pz°)pz _ (2.58)
(1 + pzt)?
The function H(z) attains maximum value at z = zo, which satisfies H (z) = 0. Solving H (z0), we getzo = « %
Hence,
(S
H(z) £H(z) = Tﬂg- (2.59)
O
Corollary 2.3. Let {, u be as Corollary 2.1. Let
R(f,w) = 1 (2.60)
1+ pw*
Then, R(f, w) satisfies 2.5 and 2.6. Here, K1(f) = \/;273’
w(2-p\"F . @-DE s
K>(f) = max § — B*; —B* ;. (2.61)
2¢ JZ 2
and p = e* with A € (0,1).
Proof. The constraint 2.5 is obtained as
R ol = —2 =Ly g < L — k) (262
9 - ZC - 1 — - . .
1+ flo| o V2B
We derive constraint 2.6 as follow. With |w| > 1, we have
R(p,w) — 1 24
R @) =1 _ Plol*™ 263
l|# 1+ Blw|*
Let G(z) be a function defined by
ﬂz2€—u
Gz) = > 0. 2.64
@ =17 G z (2.64)
It is easy to see that
. . P . p . p
= = < = . .
?—I}(} Gz) ?—I}(} 1+ pz% ?_{% 2% 4 fzi T ?—{% zH=2¢ 0 (2.65)
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. . PEH . B 1
lim G(z) = lim = lim < lim — =0. (2.66)
Z— z-oo 1 4 ﬂzZC z—00 ZH=20 4 ﬂzll z—o00 ZH

By taking the derivative of G with respect to z, we have

(¢ — w) — upz?| pz—+-1

G'(z) = 1+ p&)

(2.67)

’ ! - __1
The function G(z) attains maximum value at z = zp, which satisfies G (z) = 0. Solving G (zo), we getzo = ¥ 257”,6 %,
Hence,

=% .
G(z) < G(zo) = 2M_c<2¢;4_ﬂ > B, (2.68)

With |w| < 1, we derive the constraint 2.6 as follows:

|R(. @) = 1| _ Blo*!

= . 2.69
|l 1+ flo|** (269
_ s i
Let H(z) = e where z > 0. It is easy to see that
ﬂZZC—l 1
lim H(z) = lim = lim <lim = =0. (2.70)
Z—00 700 1 + ﬂzZ§ z—oo Z—20+1 4 fz " oo g
. e . p . p
= = < = .
EE%H(Z) ?33 1+ pz*¢ 233 7%+ pz T 233 g 2%+ 0 @71)
By taking the derivative of H with respect to z, we have
20 =1) — 2¢ 202
g < (26— D = PP 272

(1 + pz*)?

The function H(z) attains maximum value at z = z, which satisfies H (z) = 0. Solving H (z0), we getzp = %/ 2¢T—1‘
Hence,
1-L
20-1)y = 1
H(z) £ H(zp) = %ﬂ“. (2.73)
O

Remark 2.4. With R(f,w) and g as in Corollary 3.2 and 3.3 then applying Theorem 2.1, we conclude that the

expectation of the error between the regularized solution and the exact solution E|| f — 2 f € ||i2 o1 is of order

P )
max{eC,GC,e_ }

forany0 < 4 < 1.

3 | NUMERICAL EXPERIMENT

To verify our proposed methods, we carry out numerically the above regularization method. In our computations, we use
the Matlab codes for computing the generalized Mittag-Leffler function and the accuracy control in computing is 1073,
In this section, we consider Problem 1.1 with the following exact data

1

2 3 2
@(t) = Ega(—1%),  up(x) = (— - "5 + %) . W (X) = Eyy(—1) ("3 - % + g) , (3.1)
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TABLE1 Theerrorse € {0.1;0.01;0.001} and « € {0.1;0.5;0.9}
Error(«, o) e=10"1 €=10"2 e=1073

Error (0.1 R —g) 1.730918352058264 0.176238397738923 0.070161769866725

Error (0.5, —5) 2.493076059259953  0.46765811091501 0.014223513375463

Error (0.9, —%) 3.761125560996062 1.161580109523819  0.306666254069505

where the fractional order @ = 0, 3. The corresponding exact solution is given by

(X X £l
f(x)—< 3 + > 2x+6>, 3.2)
and
B (¥ 1)
ux, t) = Eqg1( t)<3 7+ 6> (3.3)

It is easy to see that u(1, t) = 0 and u satisfies Problem 1.1. The noisy data are generated by adding a random perturbation
as follows:

0 =up + €t (3.4)

We choose R(f, ) as in Corollary 2.1. Let us define a regularized solution for the system 1.1-1.2 as follows:

1 ~¢ 1
~ +oma [ 117 °(x) cos(wx)dx — Eq1(—@?) [ up(x) cos(wx)dx .
fix) = —L/ Jo @ T ! Jo_tho e dew (3.5)
27 ) Jo S5 Eqo(—a?s%)p(1 — s)ds
Using,'* we obtain
1
Ea - zEa V4
/ Eun (051 — P E, plz(1 — 5)7)ds = 22wttt W) = Lapn@) (3.6)
o y—=Z
Lety = -1, f = a and z = —w? into 3.6, we have
1 W?Ey yi1(—0%) — By gi1(—1
/ S VE, o(—0%s*)p(1 — s)ds = a1 2) a1 ). (3.7)
0 w?—1
Hence,
e
+®max 2 1 1 . (38)
__1 @ —1 / 117 (x) cos(wx)dx — Eq1(—@?) / uy(x) cos(wx)dx| edw.
2m —Oax @By g41(—0?) — Eq 011(=1) [Jo ' 0
As in Corollary 2.1, we choose wyx = €°, with o = —%, —1—(3), —%, and ¢ = 0,1,0,5,0,9. The results are shown in

Table 1. From these computations, we observe the following property. The regularization methods given in this paper
works well for even acceptable error levels. The regularized solution converges to the exact solution with different values
of a. However, the numerical accuracy becomes worse as the order of the fractional derivative increases.
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